Backpack Problem VIII¶
Description¶
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.
Example I¶
Input: coins = [1, 2, 5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example II¶
Input: coins = [2], amount = 3
Output: -1
Question¶
- LeetCode - 322. Coin Change
Transform Function¶
for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { dp[i][j] = dp[i - 1][j]; for(int k = 1; k * coins[i - 1] <= j; k++) { dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - k * coins[i - 1]] + k); } } }
Template¶
class Solution { public int coinChange(int[] coins, int amount) { int m = coins.length, n = amount; int[][] dp = new int[m + 1][n + 1]; for(int[] row : dp) Arrays.fill(row, Integer.MAX_VALUE / 2); for(int i = 0; i <= m; i++) dp[i][0] = 0; for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { dp[i][j] = dp[i - 1][j]; for(int k = 0; k * coins[i - 1] <= j; k++) { dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - k * coins[i - 1]] + k); } } } return dp[m][n] == Integer.MAX_VALUE / 2 ? -1 : dp[m][n]; } }
Optimize Analysis¶
dp[i][j] = Math.min(dp[i - 1][j - k * v[i - 1]] + k | k >= 0) dp[i][j] = Math.min(dp[i - 1][j], min{dp[i - 1][j - k * v[i - 1] + k | k >= 1} dp[i][j] = Math.min(dp[i - 1][j], min{dp[i - 1][(j - v[i - 1]) - k * v[i - 1] + k | k >= 0} + 1} dp[i][j] = Math.min(dp[i - 1][j], min{dp[i][j - v[i - 1] + 1}
Optimize I¶
class Solution { public int coinChange(int[] coins, int amount) { int m = coins.length, n = amount; int[][] dp = new int[m + 1][n + 1]; for(int[] row : dp) Arrays.fill(row, Integer.MAX_VALUE / 2); for(int i = 0; i <= m; i++) dp[i][0] = 0; for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(coins[i - 1] <= j) { dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - coins[i - 1]] + 1); }else{ dp[i][j] = dp[i - 1][j]; } } } return dp[m][n] == Integer.MAX_VALUE / 2 ? -1 : dp[m][n]; } }
Optimize II¶
class Solution { public int coinChange(int[] coins, int amount) { int m = coins.length, n = amount; int[] dp = new int[n + 1]; Arrays.fill(dp, Integer.MAX_VALUE / 2); dp[0] = 0; for(int i = 1; i <= m; i++) { for(int j = coins[i - 1]; j <= n; j++) { dp[j] = Math.min(dp[j], dp[j - coins[i - 1]] + 1); } } return dp[n] == Integer.MAX_VALUE / 2 ? -1 : dp[n]; } }
Optimize III¶
class Solution { public int coinChange(int[] coins, int amount) { int n = coins.length; int[] dp = new int[amount + 1]; Arrays.fill(dp, Integer.MAX_VALUE / 2); dp[0] = 0; for(int i = 1; i <= amount; i++) { for(int coin : coins) { if(i < coin) continue; dp[i] = Math.min(dp[i], dp[i - coin] + 1); } } return dp[amount] == Integer.MAX_VALUE / 2 ? -1 : dp[amount]; } }