Double Sequence III¶
Description¶
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Question Link¶
https://leetcode.com/problems/edit-distance/description/
Example I:¶
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example II:¶
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Questions¶
- LeetCode - 72. Edit Distance
Transform Function¶
for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1]; else dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])); } }
Solution¶
class Solution { public int minDistance(String word1, String word2) { char[] c1 = word1.toCharArray(), c2 = word2.toCharArray(); int m = c1.length, n = c2.length; int[][] dp = new int[m + 1][n + 1]; for(int i = 0; i <= m; i++) dp[i][0] = i; for(int j = 0; j <= n; j++) dp[0][j] = j; for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(c1[i - 1] == c2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; else { dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])); } } } return dp[m][n]; } }