Double Sequence IV¶
Description¶
Given a string S and a string T, count the number of distinct subsequences of S which equals T.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Question Link¶
https://leetcode.com/problems/distinct-subsequences/description/
Example I:¶
Input: S = "rabbbit", T = "rabbit" Output: 3 Explanation: As shown below, there are 3 ways you can generate "rabbit" from S. (The caret symbol ^ means the chosen letters) rabbbit ^^^^ ^^ rabbbit ^^ ^^^^ rabbbit ^^^ ^^^
Example II:¶
Input: S = "babgbag", T = "bag" Output: 5 Explanation: As shown below, there are 5 ways you can generate "bag" from S. (The caret symbol ^ means the chosen letters) babgbag ^^ ^ babgbag ^^ ^ babgbag ^ ^^ babgbag ^ ^^ babgbag ^^^
Questions¶
- LeetCode - 115. Distinct Subsequences
Transform Function¶
for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(c1[j - 1] == c2[i - 1]) dp[i][j] += dp[i - 1][j - 1] + dp[i][j - 1]; else dp[i][j] += dp[i][j - 1]; } }
Solution¶
class Solution { public int numDistinct(String s, String t) { char[] c1 = s.toCharArray(), c2 = t.toCharArray(); int n = c1.length, m = c2.length; int[][] dp = new int[m + 1][n + 1]; Arrays.fill(dp[0], 1); for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(c1[j - 1] == c2[i - 1]) dp[i][j] += dp[i - 1][j - 1]; dp[i][j] += dp[i][j - 1]; } } return dp[m][n]; } }