Double Sequence VIII¶
Description¶
We write the integers of A and B (in the order they are given) on two separate horizontal lines.
Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that:
- A[i] == B[j];
- The line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.
Return the maximum number of connecting lines we can draw in this way.
- Note:
1 <= A.length <= 500
1 <= B.length <= 500
1 <= A[i], B[i] <= 2000
Question Link¶
https://leetcode.com/problems/uncrossed-lines/description/
Example I:¶
Input: A = [1,4,2], B = [1,2,4] Output: 2 Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.
Example II:¶
Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2] Output: 3
Example III:¶
Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1] Output: 2
Questions¶
- LeetCode - 1035. Uncrossed Lines
Transform Function¶
for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(A[i - 1] == B[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; }else{ dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } }
Solution I¶
class Solution { public int maxUncrossedLines(int[] A, int[] B) { if(A == null || A.length == 0 || B == null || B.length == 0) return 0; int m = A.length, n = B.length; int[][] dp = new int[m + 1][n + 1]; for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(A[i - 1] == B[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; }else{ dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[m][n]; } }
Solution II¶
class Solution { Integer[][] memo; public int maxUncrossedLines(int[] A, int[] B) { memo = new Integer[A.length + 1][B.length + 1]; return helper(A, 0, B, 0); } int helper(int[] A, int i, int[] B, int j) { if(i == A.length || j == B.length) return 0; if(memo[i][j] != null) return memo[i][j]; int res = 0; if(A[i] == B[j]) res = 1 + helper(A, i + 1, B, j + 1); else { res = Math.max(helper(A, i + 1, B, j), helper(A, i, B, j + 1)); } return memo[i][j] = res; } }